Isolation and characterization of nonspreading mutants of the gliding bacterium Cytophaga johnsonae.
نویسندگان
چکیده
Three approaches were taken to isolate a total of 153 nonspreading mutants derived from our laboratory strain of Cytophaga johnsonae, UW101, or from its auxotrophic derivative, UW10538. Characterization of 109 of these mutants led to their placement in five general categories: (i) motile, nonspreading (MNS) mutants whose cells are motile to various degrees but whose colonies fail to spread on agar gels under any conditions of incubation; (ii) conditional nonspreading (CNS) mutants with motile cells whose colonies require more moisture to spread on agar gels than do those of wild-type cells; (iii) filamentous conditional motility (FCM) mutants whose cells grow as nonmotile filaments or as motile cells with wild-type morphology, depending on conditions of incubation; (iv) short, tumbling, nonspreading (STN) mutants with short cells that tumble constantly; and (v) truly nonmotile (TNM) mutants whose cells never move and whose colonies never spread under any conditions tested. All TNM mutants exhibited a remarkable pleiotropy not seen in the other four classes of mutants: all were resistant to 39 phages to which wild-type cells are sensitive, and all were unable to digest chitin, which is digested by wild-type cells. The correlation between ability to move and phage sensitivity was strengthened further by showing that 150 additional TNM mutants derived from UW101 and 43 TNM mutants derived from 29 independent isolates of C. johnsonae were resistant to all phages to which their parents were sensitive. Furthermore, motile revertants of TNM mutants became phage sensitive, and temperature-sensitive mutants were motile and phage sensitive at 25 degrees C and nonmotile and phage resistant at 32 degrees C. Evidence supports the conclusion that any mutation rendering cells truly nonmotile invariably alters cell surface-associated properties such as phage sensitivity and chitin digestion merely as a consequence of changing a moving cell surface to a static surface.
منابع مشابه
Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA.
The mechanism of bacterial gliding motility (active movement over surfaces without the aid of flagella) is not known. A large number of nonmotile mutants of the gliding bacterium Flavobacterium johnsoniae (Cytophaga johnsonae) have been previously isolated, and genetic techniques to analyze these mutants have recently been developed. We complemented a nonmotile mutant of F. johnsoniae (UW102-09...
متن کاملCytophaga johnsonae Motility Mutant
The lack of cell translocation and the resulting formation of nonspreading colonies of mutants of the gram-negative gliding bacterium Cytophagajohnsonae have been correlated with the loss of cell surface features of the organism. These cell surface traits include the ability to move polystyrene-latex beads over the cell surface and the ability to be infected by bacteriophages that infect the pa...
متن کاملCloning and characterization of the Flavobacterium johnsoniae gliding-motility genes gldB and gldC.
The mechanism of bacterial gliding motility (active movement over surfaces without the aid of flagella) is not known. A large number of mutants of the gliding bacterium Flavobacterium johnsoniae (Cytophaga johnsonae) with defects in gliding motility have been previously isolated, and genetic techniques to analyze these mutants have recently been developed. We complemented a nongliding mutant of...
متن کاملLong-Term Changes in Chemostat Cultures of Cytophaga johnsonae.
Long-term studies with a gliding, heterotrophic bacterium, Cytophaga johnsonae, were conducted in a glucose-limited chemostat at a high and a low dilution rate. To test the stability of the steady state during long-term experiments the following parameters were monitored: optical density, glucose concentration, glucose uptake potential, ATP content of the cells, and plate counts on two differen...
متن کاملProperties of Cytophaga johnsonae strains causing spoilage of fresh produce at food markets.
Two strains of gliding, orange-pigmented bacteria, isolated from fresh bell pepper and watermelon, respectively, showing soft-rot lesions, were identified as Cytophaga johnsonae. They differed from seven type strains of C. johnsonae deposited at the American Type Culture Collection (ATCC) in some properties, such as the ability to utilize glucose, xylose, trehalose, rhamnose, and sucrose. Spher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 159 1 شماره
صفحات -
تاریخ انتشار 1984